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tions when a large phase-velocity ratio exists, as exem-

plified by the pronounced bandpass response of the in-

homogeneous C section in contrast with the all-pass

response of the homogeneous C section.

[1]

[2]

[3]

[4]

[5]

REFERENCES

S, B. Cohn, “Shielded coupled-strip transmission line,” IRE
Trans. Microwave Theory Tech., vol. MTT-3, pp. 29-38, oct.
IQ<<
.,vv.

— “Characteristic impedances of broadside-coupled strip
transmission lines, ” IRE Trans. Microwave Theory Tech., vol.
i14TT.8, Pf). 633-636, NOV. 1960.
H, E, Green, “The numerical solution of some important trans-
missic,n-line problems, ” IEEE Trans. Microwane Theory Tech.
(Special Issue on Microwaze Falters), vol. MTT-13, pp. 676-692,
Sept. 1965.
M. K, Krage and G. 1. Haddad, “The characteristic impedance
and coupling coefficient of coupled rectangular strips in a wave-
guide, ” IEEE Trans. Microwave Theory Tech., vol. MTT- 16,
pp. 3(12-307, May 1968.

T. G. Bryant and J. A. Weiss, ‘(Parameters of microstrip trans-

[6]

[7]

[8]

[9]

[10]

[11]

[12]

mission lines and of coupled pairs of microstrip lines, ” IEEE
Vy Tech. (1968 SywsPosium Issue), vol.Trans. Microwave Theor-

MTT-16, pp. 1021-1027, Dec. 1968. - -

S. V. Judd, I. Whiteley, R. J. Clowe~, and D. C. Rickard, “An

analvtlcal method for calculating mlcrostriu transmission line

parameters,” IEEE Trans. M~crowave Theory Tech., vol.
MTT-18, pp. 78-87, Feb. 1970.
J. E. Dailey, “A strip-line di~ectional coupler utilizing a non-
homogeneous dielectric mednsm, ” IEEE Trans. Microwave
Tkeory Tech., vol. MTT-17, pp. 706-712, Sept. 1969.
G. I. Zysman and A. Matsumoto, “Properties of microwave C-
sections, ” IEEE Tvans. Circuit Theory, vol. CT-12, pp. 74-82,
Mar. 1965.
E. M. T. Jones and J. T. Bolljahn, “Coupled-strip-t ransmission-
line filters and directional couplers, ” IRE Trans. Microwave
Theory Tech., vol. MTT-4, pp. 75-81, Apr. 1956.
D. L. Gish and O. Graham, “Characteristic impedance and phase
velocity of a dielectric-supported air strip transmission line with
side walls, ” IEEE Trans. Microwave Theory Tech., vol. M TT- 18,
pp. 131–148, Mar. 1970.
R, E. Collin, Field Theory of Guided Waves, New York:
McGraw-Hill, 1960.
R. L. Ketter and S. P. Prauel, Jr., Modern Methods of Engineer-
ing Computation. New York: McGraw-Hill, 1969.

Computer Analysis of the Fundamental and Higher Order

Modes in Single and Coupled Microstrip

DOUGLAS G. CORR AND J. BRIAN DAVIES

Abstract-By means of finite difference methods, dispersion

curves are obtained for the fundamental and higher order hybrid
modes in both single and coupled microstriw Structures of realistic

proportions are investigated by the use of a graded finite difference
mesh. Variational methods are used in deriving the finite difference
equations. The higher order modes are found to be similar to LSM
slab line modes. A spurious nonphysical class of solutions is found to
exist in this and similar formulations, the characteristics of which

are described.
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I. INTRODUCTION

I

N h’fODERN microwave devices the integrated cir-

cuit is a fundamental component, and microstrip is

an essential part of such circuits [1], [2]. hlanY

articles have appeared giving design data for single

microstrip [3]– [7 ], and for pairs of coupled strips [8],

but common to all but a few of these publications is the

assumption that the fundamental mode of propagation

may be approximated by TEM mode propagation (the

quasi-static approximation). Because microstrip is a de-

vice which contains two different dielectric media, the

mode supported can never be TEM (except for dc

operation), and in general a hybrid mode propagates.

Design based on the quasi-static approximation has

often been found to be adequate for the fundamental

mode when considering operation below about 4 GHz

with low permittivity substrates (K below 6). However,

recent developments require the operation of micro-
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strip at higher frequencies [2], [9], [10], and the use of

high permittivity substrates. For optimal design of

microstrip devices, it is essential to have accurate in-

formation on the characteristics of the modes supported.

The quasi-static approximation inherently cannot give

information on dispersion or on the propagation of

modes other than the fundamental.

An analysis is sought with the following objectives.

1) To deal with the true hybrid-mode nature of all

microstrip modes. Information on dispersion and the

field components is to be obtained for the dominant and

higher order modes.

2) To consider microstrip within a conducting box

(to give information on the effect of the enclosure that

is necessary in practice).

3) Again, for realistic reasons, it must be possible for

the enclosing conductor dimensions to be large com-

pared with the microstrip conductor width and sub-

strate thickness.

4) The method used should be sufficiently general to

allow solutions to be obtained for single and coupled

microstrip, and for related problems, such as slotline [2]

and coplanar waveguide [2].

5) The analysis should be “exact in the limit” and

not include avoidable approximations, so that accuracy

is limited only by computer power. The only basic ap-

proximations conceded are the perfect geometry, the

loss-free dielectric, and the infinite conductivity of the

conductors.

Recently a number of papers [11]–[15 ] have ap-

peared, dealing with the dispersive and hybrid-mode

nature of microstrip. However, none of these meets all

the above five objectives which are considered desirable

for an understanding of microstrip structures,

The theory of Denlinger [13] does not consider the

desirable objectives 2) and 5) above. He deals with the

idealized structure of the open microstrip, and therefore

cannot give information on the effects of the normal

practice of enclosing the microstrip. His analysis in-

cludes the basic approximation of assuming a current

distribution equal to that of quasi-TEM conditions.

The approaches of Daly [14] and Gopinath and

Hornsby [11] have similar aims to those of this paper,

but they seriously fall short of objective 3) above. Spe-

cial attention has been taken in this work to consider

objective 3) in the belief that otherwise one cannot

study realistic geometries.

Mittra and Itoh [12] transform the conventional

‘(mode-matching” method via the singular integral

equation approach to give a determinantal equation

that is more rapidly convergent than conventional mode

matching. This is undoubtedly a powerful technique,

but there are problems of slower convergence when

analyzing structures with realistic (large) sized conduct-

ing boxes and when analyzing fast waves.

Z ysman and Varon [15] give no details of how they

solve their system of coupled integral equations, and

make it virtually impossible to comment on their ap-

proach except to say that it would need modification to

meet the objectives 2) and 4).

All the objectives 1) to 5) have been met in the

method to be described. By the use of finite difference

methods this work gives dispersion characteristics for

several of the lowest order propagating modes in both

single and coupled microstrip lines. For the investiga-

tion of structures with realistic dimensions by finite

difference methods, it is thought to be essential to use

the variational method described.

Two distinct advantages of the approach in this paper

are a) the ability to deal equally with single microstrip,

a pair of coupled strips, thick strips, overlay couplers

[16], slot line [2], [17], or indeed any reasonable set of

conductors and dielectric within a conducting box, and

b) the use of an algorithm that finds the eigenvalues

automatically and categorically for any given structure

and phase velocity.

A brief outline of the work described in this paper has

been given in [18].

II. FORMULATION OF THE ELECTROMAGNETIC

FIELD PROBLEM FOR MICROSTRIP

A microstrip line is considered to be symmetrically

enclosed by a rectangular conducting box (Fig. 1). Al-

though single microstrip lines are described, the pro-

cedure for coupled lines and other structures is very

similar. The strips may have finite thickness, however,

results are given only for strips of negligible thickness.

The dielectric substrate is assumed to be homogeneous

and isotropic. Propagation takes place in the z direction

with a z dependence of exp ( —j@). Since the four trans-

verse field components H=, Hg, E., and EY may be

written in terms of E, and HZ, then it is sufficient to solve

the Helmholtz equations:

Vt2He + k2H. = O (1)

where

Vtf . .-!!!-+ .a:
axz ap

and

k’ = CO’W– b’

subject to the boundary conditions:

13H.
E==O —= o (at electric walls)

an

dE,
—. o H8=0 (at magnetic walls)
dn

(fi = unit vector normal to the walls) and the continuity

conditions (e.g., for an x-directed-interface)
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where the subscripts A and D refer to the values in air

and dielectric, respectively, and

kA2 =koz = @2/@l-p2

and

kD2 ‘@2/@oK-~2.

In the way described it is possible to formulate the

problem in terms of Es and Hz. It is also possible that

other pairs of field components may be used to describe

the problem, such as the transverse electric or magnetic

field components, and such alternatives have been con-

sidered [26], [27 ]. However, for reasons given in [26],

the longitudinal field formulation is found most suitable.

The eigenvalues of the Helmholtz equations k02and

kD2 are related according to the phase velocity VPC

(where Vp is the relative phase velocity and c the velocity

of light):

ki)’ &/.lo6l — /32 1 – I/vpz
T = –— . ——____ . —. (5)

kD’ IJ)21.LOCOK — 62 K — l/ZIp2

The range of solutions of the wave equation as a func-

tion c)f T are shown in Fig. 2. There are two regions cor-

responding to propagating hybrid modes; these are

termed the slow and fast wave regions, corresponding to

propagation with l/ti; < v, <1 and VP> 1, respectively.

The fundamental mode is distinguished as that mode

whose phase velocity tends to the static value as the

frequency of operation tends to zero; consequently, the

slow wave region is of particular interest. Unlike other

sectors of the diagram, the slow-wave region is not

uniquely defined by i-. When T is negative, both slow-

wave and transient-wave solutions are possible, cor-

responding to negative and positive values of ko, re-

spectively. In Section IV this will be seen to cause the

matrix eigenvalue equation for the problem to be in-

definite.

4‘Y=i
v!

A *

Y/
TRANSIENT P’

k:>O

ka>O WAVES
a

g<o /1
Fig. 2. Classification of hybrid mode solutions OP/Caversus LY.

III. DERIVATION OF THE FINITE

DIFFERENCE EQUATIONS

For the method of finite differences, the continuous

fields are replaced by discretized field values. Normally,

the partial differential equations governing the system

are approximated by the direct use of Taylor’s theorem

resulting in a matrix eigenvalue equation [19 ]– [21 ].

Two considerations make this approach undesirable.

First, the necessity for the use of efficient methods of

solving the matrix eigenvalue equation. Second, the

use of a graded finite difference mesh, which is required

for the investigation of structures with realistic dimen-

sions.

In general, the most efficient methods of solution are

available for symmetric matrix eigenvalue problems

[22 ]. When a graded mesh is used, the matrix of finite

difference coefficients will be unsymmetric if obtained

by the direct use of Taylor’s theorem. A symmetric

matrix can be obtained by the use of the variational

method [20 ], [21], the method being applicable for self-

adjoint systems. As well as always producing a sym-

metric matrix, this method has the advantage that cer-

tain boundary and interface conditions appear as “na-

tural” boundary and interface conditions, and conse-

quently do not require any special treatment.

The requirement that the mesh must be graded is to

permit the investigation of structures with realistic

dimensions, where the enclosing box is large compared

to the strip width and substrate thickness. If a uniform

mesh were used, then in order that the mesh be suffi-

ciently fine for the strip to be adequately represented,

the total number of mesh points has to be extremely

large. The order of the finite difference matrix indirectly

proportional to the number of mesh points used, and in

practice, storage requirements and speed of solution set

an upper limit on the number of mesh points that may

be used. However, the matrix order can be reduced and

good accuracy still obtained by the use of a graded mesh.

A fine mesh is then used only in regions where the fields

vary most rapidly (i.e., in the vicinity of the strip, and the

air–dielectric interface). Computing times and storage
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Fig.3. Typical region within finite difference mesh.

can be reduced by factors of at least 100 and 10, respec-

tively, by this graded mesh facility.

The derivation of the finite difference equations pro-

ceeds from the variational expression for an inhomo-

geneously filled structure. This is obtained directly from

Maxwell’s curl equations and has been given by Berk

[23]. In terms of the longitudinal field components, we

have

1+ COUH,2 dS = O. (6)

By application of the divergence theorem, this may be

put in a form which does not involve derivatives higher

than the first order (which is required for the finite dif-

ference method to be used):

where

(7)

{

1, in air
gr =

% in dielectric.

J can be shown to be stationary in the normal way [23],

[24].

For simplicity, the finite difference mesh is taken to

have rectangular pitch, and is so arranged that mesh

points lie exactly on the boundaries, the strip edge, and

the interface. Each mesh point specifies a value for both

d and $, except at the boundaries where either qi and/or

# may be zero.

Consider an elemental region in the difference mesh

such as that described by 3 points (Fig. 3, putting

121= Izz = h). The surface integral of (7) over this region

may be approximated by using forward or backward

difference formulas [20 ] to replace the first derivatives,

e.g.,

There is considerable freedom

+ r’i?‘O)’l:”‘8)
in the choice of approxi-

mations for terms in (7) such as ~~ q52dS. Two possibili-

ties are

SsI+’ dS = ; (00’ + +1’ + +22) ; (9)
A

or

Ss 1
@’ Q’s = : (40’ + 412 + 42’ + 4041 + +002

A

112
+ I#@’)~ . (lo)

Equation (10) is consistent with linear in interpolation

of ~ over the region, and is the basis of methods known

as finite elements [14]. Methods which use approxima-

tions of the type (9) are known as finite difference

methods. Thus by the use of approximations of the form

(8) and (9) or (8) and (10), it is possible to arrive at an

approximation for the contribution from the elementary

triangular region of Fig. 3 to the integral of (7). The

surface integral J of (7) is then computed as the sum of

approximations of each elemental region in the struc-

ture. The stationary property of J is utilized by differ-

entiating in turn with respect to each of the variables

h, 42, “ “ “ , dit $1, $2, . “ “ , ~;. In this way N linear

equations are derived for the system where N is the

total number of variables d~ and 40 Details on this are

given in Appendix I for the finite difference type of ap-

proximation. In matrix notation, the following eigen-

value equation results:

by using approximations of the type (9), and

AX = AB.v

by using approximations of the type (10). hIatrices A

and B are symmetric band-structured matrices. From

considerations of the solution of these equations (Sec-

tion IV), equations in standard form (11) have consider-

able advantages. It should be noted that (12) cannot

[25 ] be reduced to the standard form of (11) without

destroying the band structure and so increasing con-

siderably the computer storage requirements.

A numerical comparison was made [26] of the finite

difference and simple finite element methods as applied

to the empty rectangular waveguide, and it was found

that there are no advantages to be obtained by the use

of the finite element method.
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IV. SOLUTION OF THE NIATRIX

EIGENVALUE EQUATIONS

The solution is sought of the matrix eigenvalue equa-

tion in standard form Ax= Ax, where A is a symmetric

band-structured matrix [19 ]– [21] of order n and band-

width 2m + 1. Typically, for the specific application to

microstrip, n = 360 and m = 44. Since the eigenvalues h

may take on both positive and negative values in the

region of interest (~< O), then the matrix eigenvalue

equation is indefinite. The algorithms chosen were most

suitable for a symmetric band structured matrix; they

were as follows.

1) A is reduced to tridiagonal form [28].

2) The eigenvalues of a tridiagonal matrix are found

by the method of bisection [29].

3) The eigenvector associated with a specific eigen-

value was found by the method of inverse iteration

[22], [30].

By the use of methods 1) and 2), all the eigenvalues

of A may be found. In practice, only the negative eigen-

values closest to zero are required, and typically, the

lowest 8 were categorically determined. It is important

to realize that by these methods, it is impossible to omit

any sol utions, and this is a very desirable feature of the

method used in comparison with iterative methods. In

general, iterative methods converge to the eigenvalue

closest to a given estimate; in Appendix I I it is shown

that the eigenvalue spectrum is much more complicated

than might first be thought, and especially for this rea-

son the use of iterative methods can give very mislead-

ing results.

If the finite element formulation of the problem had

been used, not only is the minimum storage requirement

approximately doubled by the need to store two band

matrices, but the only appropriate algorithm available

[31] which preserves the band structure is an iterative

method, This particular method could be used to deter-

mine all the eigenvalues required, but it would be pro-

hibitively inefficient to do so. There is certainly no

numerical advantage to be obtained by the use of the

simple finite element method.

V. RESULTS

Usin$; the methods described, dispersion curves are

obtained in the form of graphs of Keff against frequency,

where ~,ff = l/vf12. Although the Brillouin diagram is a

more usual display of this information, K~ff is a more

sensitive parameter, and its use is widespread in micro-

strip literature. In addition to dispersion curves, power

density diagrams are given at a particular frequency for

certain modes. These are determined by evaluating the

field components for a particular eigenvalue, and com-

puting the power flow [32 ] from

p.SsRe (E X H*) dS. (11)

The diagrams show contours of equal power levels given

in decibels relative to the highest power level.

250 ~ \ A
o 12 D/ELEC TR/C 240

Fig. 4. Graded mesh used for single microstrip in a large box (half
section shown). Note that the strip width equals the substrate
thickness. Relative permittivity of substrate =9.7. Scale: 1 unit
=0,002 in.

o 10 20 30 40 50 GHz
8.0 I

Keff

7.0-

TEM

6.0 -

5.0 -

4.0 -

3.0 -

Fig. 5. Dispersion characteristics for the structure of Fig. 4. —,
modes with a magnetic wall symmetry plane; – – –, modes with
an electric wall symmetry plane.

The results for two microstrip structures are pre-

sented: enclosed single microstrip and enclosed coupled

microstrip lines.

Single microstrip

The configuration considered is shown in half section

in Fig. 4. The crosses designate mesh point values; it

should be noted that the vertical scale is discontinuous.

The dispersion curve obtained for many of the propagat-

ing modes is shown in Fig. 5; this shows results for both

electric and magnetic wall symmetry planes. The value

of Keff for the structure is given for static (TEM) opera-

tion, derived by accurate finite difference solution of the

two associated static problems [26 ]. It is seen that there

is indeed one mode without a frequency cutoff, and this



674 IEEE Transactions ON MICROWAVE THEORY AND TECHNIQUES, OCTOBER 1972

I
OIEL~CTR/C

I

I

*{R !=’,

x ,_

I ,40

I=’\. ‘\

J.....$; “\.
.)

~ii-f~’~ j /“
1

DIELEcTRIc

Fig. 6. Power flow diagramsf o~structur~i nFig.4 givingc ontours
of equal power density mdeclbelsrelatwe to the highest contour.
(a) Fundamental mode at frequency 1.9 GHz (G H=6.64). (b)
Static solution (Keff=6.41),

is seen to become highly dispersive above 2 GHz. The

difference between the static limiting value of K.ff for

this mode and the TEM value shown is due entirely to

discretization errors [20] in the hybrid mode analysis.

There are also seen to be a number of higher order modes

which have a low-frequency cutoff; for reference these

are designated according to their plane of symmetry E

or M for electric and magnetic walls, respectively, and

numbered in order of ascending cutoff frequency. Thus

in this way, the higher order modes are specified by the

letters El, Ml, Ez, Mz, E3, MB, etc., left to right on the

dispersion curve. It is seen that the dispersion curves

tend to group in pairs of modes with the same subscript,

i.e., EI and Ml mode dispersion curves are very close

togsther.

Further information of the modes was found by ex-

amination of power density diagrams. Fig. 6 shows dia-

grams for both the fundamental mode and for the static

case. It is seen that there is considerable similarity be-

tween the two diagrams, and at the frequency given, the

power flow is mainly below the strip in the dielectric

substrate region.

Because the microstrip occupies only a small fraction

of the tctal dielectric surface in the structure considered,

then slow wave propagation by the associated slab line

structure is of considerable interest. Specifically, we can

consider the structure formed by the removal of the

microstrip. Propagation of LShI and LSE modes by

slab line structures is, of course, well known [32]. The

I

““’L
,_. --3o ----

/ /..) i

_

STRIP ~;’–”–-+__-—__

A/R,j I

(
/J-

—
1

/
DIEL EC TRIc

Fig. 7. (a) Power flow diagram for structure of Fig. 4 giving con-
tours of equal power density in decibels relative to the highest
contour. Higher order mode MI (see text) at frequency 22.9
GHz (wff =4.0). (b) Power flow diagram for the LSMIZ mode on
the associated slab line for the structure of Fig. 4 at frequency
22.7 GHz (fiff=4.0).

dispersion curves for these modes were compared with

the higher order microstrip modes, and it was found that

there was a very close correspondence in the curves for

the LSM modes and the high-order microstrip modes. It

was further found by the examination of the power den-

sity diagrams that there was a very close similarity be-

tween the diagrams for the modes &fl and LSM12, and

between IW.Z and LSMI1; the diagrams for the former

case are given in Fig. 7. The conclusions drawn about

the higher order modes are given in the discussion for

coupled strip below; however, it should be noted that

apart from these modes, the device supports only one

other type of mode, the fundamental mode for which

~~ff tends to the static value asj-+0. The “surface-wave”

modes reported by Daly [14] are considered in Appen-

dix II and are shown to be a misinterpretation of re-

sults.

Coupled Strips

The coupled strip device is shown in half section in

Fig. 8; it should be noticed that again the vertical scale

is broken. The dispersion curves for the structure are

shown in Fig. 9 together with the static case param-

eters. The two modes without a low-frequency cutoff

value correspond to the ‘(even” and “odd” modes; these

have magnetic wall and electric wall symmetry, re-

spectively. It is seen that the limiting values of K.ff for

these modes are in good agreement with the respective

static values. A number of higher order modes exist, and
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Fig. 8. Graded mesh used for coupled strips in large box (half sec-
tion shown). Note that the strip width equals the substrate thick-
ness. Relative permittivity = 9.7. Scale: 1 unit =0.001 in.
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Fig. 9. Dispersion characteristics for the structure of Fig, 8.
——— , modes with a magnetic wall symmetry plane; -- –,
modes with an electric wall symmetry plane. Note that modes
.EI and M,, E, and M,, Ei and M, are virtually coincident.

these are seen to be grouped in pairs in a manner similar

to that noted above for single microstrip. Again, it was

found that the dispersion curves for the LSM modes

which propagate in the associated slab line structure

were almost identical to those obtained for the high-

order coupled strip modes. Examination of power den-

sity diagrams showed that the modes MI and El are

very similar to each other and to the LSM12. mode. It is

concluded that because the plane of symmetry makes so

little difference to the higher order modes with the same

subscript, then these modes are strongly associated not

with the strip, but with the dielectric–air interface be-

tween the strip edge and the outer side wall of the en-

closure. In view of their close similarity to the LSM

67.5

modes, they are best considered as distorted LSM

modes. The specific type of mode correspondences are

grouped below:

El Ml LSM12

E2 M2 LSM14.

Thus for enclosed microstrip devices, an approximate

indication of the frequency when high-order modes will

propagate is given by a simple calculation of the cutoff

frequency of the LSMIZ mode.

It should be noted that when the dimensions of the

enclosing conducting box are just a few times the strip

width (e. g., the case given in Appendix II), then the

effect of the strip is to greatly perturb the slab line type

modes, and the design indication given above ceases to

be accurate.

VI. CONCLUSION

The specific conclusions of this work are as foIlows,

1) Theory and typical results are given for the nu-

merical solution of a class of inhomogeneously filled

waveguide problems with or without inner conductors.

2) Notable features of the approach are as follows.

a) A nonuniform mesh can be used to allow the in-

vestigation of realistic structures, and to make optimum

use of the available computer capability.

b) Special attention has been given in the formula-

tion in order to use matrix methods which allow cate-

gorical determination of the eigenvalues.

3) Results for the main objective of this work have

been obtained for two realistic microstrip devices. Com-

plete dispersion curves for these devices were obtained,

and the following are shown.

a) The dominant mode in microstrip is dispersive,

but in the zero frequency limit it can be identified with

the static case. Similar results for the two dominant

modes in coupled strip were also obtained.

b) There is a close relation between the higher

order modes, and the LSM modes for the associated slab

loaded waveguide. This suggests that a simple estimate

of the frequency at which higher order modes will

propagate may be obtained through consideration of the

well-known (and easily calculated) LSM modes.

4) Attention is drawn to the physically spurious

modes described in Appendix 11. These modes are

thought to be present in any finite difference or finite

element formulation for inhomogeneous problems when

slow wave solutions are sought.

5) The “surface wave” mode reported by Daly [14]

is believed to be just one of the spurious modes men-

tioned in 4) above. All the features of the mode which

he describes have characteristics of the spurious modes

discussed in this work.
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APPENDIX I fidence knowing that for a particular value of v, all the

By dividing the structure into a number of elemental solutions (for frequency) are obtained within the range

regions, then (7) may be approximated by Jz~j Sj. plotted. This categorical evaluation of all eigenvalues

Considering a particular triangular region as given in within a given interval is a feature of the Sturm sequence

Fig. 3(a), by the use of finite difference approximations properties [22 ], [29]. The resulting dispersion curves

Sj may be obtained. By differentiation with respect to are seen to be unexpectedly complicated. However, the

each of the mesh point variables, the following matrix dispersion curves can be interpreted as a superimposi-

equation results: tion of two classes of results (Fig. 11). One class consists
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of the fundamental microstrip mode, which is noted towhere

()P’= P2K p=Tp,
cd

tend to the static value of K,ff as j-+0, and a number of

higher order modes which have frequency cutoff. The

other class consists of a large number of modes without

a IoWTfrequency cutoff; these are nonphysical modes

which nevertheless satisfy the approximate mathemati-

cal formulation of the problem. The tessellated pattern

of Fig. 10, with individual curves smoothly alternating

between two intersecting classes of modes, is typical of a

coupled mode system [33 ].

The cause of these spurious solutions is believed to be

in the indefinite nature of the variational expression,

(7). Similar extraneous solutions are reported by Bar-

rington [34] that occur for an indefinite system but not

for a definite system. The identification of the spurious

mode class was made by investigation of slab-loaded

waveguide structures. The modes which propagate on

this type of structure are well known [32]; however

using the formulation described, it was found that as

well as these physical modes, spurious modes were also

present of identical appearance to those in Fig. 11. It

was found that the number of these modes was equal to

the number of mesh points on the air–dielectric inter-

face, and that each mode could be characterized by the

number of changes of sign of the values of @ across the

interface. Again, this number of spurious solutions

agrees with Barrington’s findings [34 ], where one free

boundary point gave rise to one spurious solution, and

two points to two spurious solutions. These modes were

and
W*=W= P’*()(JJ

(but see text following).

It can be shown that for a graded mesh system, it is

preferable to set W= O except when an air–dielectric in-

terface bounds one side of the triangle; in this case the

terms W indicated by an asterisk should be included.

These terms are specified here for the case of an x-di-

rected interface.

By repeated application of matrices of the form given

above, and by utilizing the stationary property of (7),

then N linear equations maybe obtained for the system.

APPENDIX II

The mathematical formulation of the problem is such

that for a particular structure, VP ( = l/~&ff), is the only

independent variable. By the use of the algorithms men-

tioned in Section IV, a number of solutions are found

for the eigenvalue equation, each eigenvalue correspond-

ing to a different frequency value for the same value of

VP. Such values are designated by “X” on Fig. 10. By

taking a sufficient number of values of VP, after careful

consideration it is possible to connect the results unique-

ly by smooth curves. This can be done with con-
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Fig. 10. Ilispersion results computed forenclosed single microstrip.
Strip width=l. O mm.; substrate thickness=O.5 mm; height of
enclosure =2.0 mm; width of enclosure =3,5 mm; relative permit-
tivity =: 9.0.
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Fig. 11. Dispersion curve interpolated from results of Fig. 10.
.— , spurious modes; -, physical modes.

found to exist only in the range

K+l
K< K, ff <—.

2

Apart from the considerations given, it would be very

difficult to account for these modes physically; their

number, absence of low-frequency cutoff, and their

677

rapid spatial dependence of field components along the

dielectric–air interface all point to their being nonphysi-

cal.

The dispersion curves given in this paper (except

Fig. 10) represent the interpolated curves derived from

more complex curves, like Fig. 10, which contain the

spurious mode solutions.
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Frequency-Dependent Characteristics of

Transmission Lines

Microstrip

MARK K. KRAGE AND GEORGE I. HADDAD

Abstract—A method for determining the frequency-dependent
characteristics of both single and coupled liies in shielded microstrip
is presented. Numerical results are given for a variety of dielectric
configurations and the effects of geometry on the dispersion charac-
teristics are examined in detail. Of particular interest are the charac-

teristics of coupled lines on compensated dielectric structures, i.e.,

structures that are capable of achieving equal even- and odd-mode

phase velocities, and the effects of dispersion on the directivity char.

acteristics of such lines are discussed. In addition, the variation of

impedance as a function of frequency, where the impedance is defined
as the ratio of the power to the square of the longitudinal current, is
presented for representative cases of single and coupled lines.

I. INTRODUCTION

F

OR sufficiently low frequencies the quasi-TEM

theory can be employed to obtain the characteris-

tics of microstrip lines and, using this approxima-

tion, extensive design data have been calculated for both

single and coupled lines [1 ]– [3 ]. When the wavelength

in a microstrip line becomes comparable to the trans-

verse dimensions of the line the deviation from quasi-

TEM behavior becomes significant and higher order

modes of propagation become possible. Recently, several

authors [4 ]– [10 ] have advanced methods for calculating

the frequency-dependent characteristics of microstrip

lines, but only limited numerical results have been pre-

sented for both open and shielded microstrip configura-
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Fig. 1. Shielded microstrip geometry.

tions. Most authors have confined their attention to the

dominant mode characteristics of single lines, but Den-

linger [9] and Gelder [10] have considered the charac-

teristics of a pair of coupled lines and Mittra and Itoh

[7] and Pregla and Schlosser [11] have considered

higher order modes in a shielded structure.

In this paper a method is presented for calculating the

frequency-dependent characteristics of shielded micro-

strip lines, and the effects of geometry on the dispersion

characteristics of single and coupled lines are considered

in detail. Although the analysis will be carried out only

for the configuration of Fig. 1, results will be presented

for the modified configurations of Figs. 2 and 3, as well as

for the geometry of Fig. 1. It was demonstrated in a pre-

vious paper [3] that coupled lines on the modified

geometries can achieve equal even- and odd-mode phase

velocities and are therefore capable of achieving high


