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tions when a large phase-velocity ratio exists, as exem-
plified by the pronounced bandpass response of the in-
homogerieous C section in contrast with the all-pass
response of the homogeneous C section.
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Computer Analysis of the Fundamental and Higher Order
Modes in Single and Coupled Microstrip

DOUGLAS G. CORR anp J. BRIAN DAVIES

Abstract—=By means of finite difference methods, dispersion
curves are obtained for the fundamental and higher order hybrid
modes in both single and coupled microstrip. Structures of realistic
proportions are investigated by the use of a graded finite difference
mesh. Variational methods are used in deriving the finite difference
equations. The higher order modes are found to be similar to LSM
slab line modes. A spurious nonphysical class of solutions is found to
exist in this and similar formulations, the characteristics of which
are described.
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[. INTRODUCTION

N MODERN microwave devices the integrated cir-
J:[ cuit is a fundamental component, and microstrip is

an essential part of such circuits [1], [2]. Many
articles have appeared giving design data for single
microstrip [3]-[7], and for pairs of coupled strips [&],
but common to all but a few of these publications is the
assumption that the fundamental mode of propagation
may be approximated by TEM mode propagation (the
quasi-static approximation). Because microstrip is a de-
vice which contains two different dielectric media, the
mode supported can never be TEM (except for dc
operation), and in general a hybrid mode propagates.
Design based on the quasi-static approximation has
often been found to be adequate for the fundamental
mode when considering operation below about 4 GHz
with low permittivity substrates (k below 6). However,
recent developments require the operation of micro-
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strip at higher frequencies [2], [9], [10], and the use of
high permittivity substrates. For optimal design of
microstrip devices, it is essential to have accurate in-
formation on the characteristics of the modes supported.
The quasi-static approximation inherently cannot give
information on dispersion or on the propagation of
modes other than the fundamental.

An analysis is sought with the following objectives.

1) To deal with the true hybrid-mode nature of all
microstrip modes. Information on dispersion and the
field components is to be obtained for the dominant and
higher order modes.

2) To consider microstrip within a conducting box
(to give information on the effect of the enclosure that
is necessary in practice).

3) Again, for realistic reasons, it must be possible for
the enclosing conductor dimensions to be large com-
pared with the microstrip conductor width and sub-
strate thickness.

4) The method used should be sufficiently general to
allow solutions to be obtained for single and coupled
microstrip, and for related problems, such as slotline [2]
and coplanar waveguide [2].

5) The analysis should be “exact in the limit” and
not include avoidable approximations, so that accuracy
is limited only by computer power. The only basic ap-
proximations conceded are the perfect geometry, the
loss-free dielectric, and the infinite conductivity of the
conductors.

Recently a number of papers [11]-[15] have ap-
peared, dealing with the dispersive and hybrid-mode
nature of microstrip. However, none of these meets all
the above five objectives which are considered desirable
for an understanding of microstrip structures.

The theory of Denlinger [13] does not consider the
desirable objectives 2) and 5) above. He deals with the
idealized structure of the open microstrip, and therefore
cannot give information on the effects of the normal
practice of enclosing the microstrip. His analysis in-
cludes the basic approximation of assuming a current
distribution equal to that of quasi-TEM conditions.

The approaches of Daly [14] and Gopinath and
Hornsby [11] have similar aims to those of this paper,
but they seriously fall short of objective 3) above. Spe-
cial attention has been taken in this work to consider
objective 3) in the belief that otherwise one cannot
study realistic geometries.

Mittra and Itoh [12] transform the conventional
“mode-matching” method via the singular integral
equation approach to give a determinantal equation
that is more rapidly convergent than conventional mode
matching. This is undoubtedly a powerful technique,
but there are problems of slower convergence when
analyzing structures with realistic (large) sized conduct-
ing boxes and when analyzing fast waves.

Zysman and Varon [15] give no details of how they
solve their system of coupled integral equations, and
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make it virtually impossible to comment on their ap-
proach except to say that it would need modification to
meet the objectives 2) and 4).

All the objectives 1) to 5) have been met in the
method to be described. By the use of finite difference
methods this work gives dispersion characteristics for
several of the lowest order propagating modes in both
single and coupled microstrip lines. For the investiga-
tion of structures with realistic dimensions by finite
difference methods, it is thought to be essential to use
the variational method described.

Two distinct advantages of the approach in this paper
are a) the ability to deal equally with single microstrip,
a pair of coupled strips, thick strips, overlay couplers
[16], slot line [2], [17], or indeed any reasonable set of
conductors and dielectric within a conducting box, and
b) the use of an algorithm that finds the eigenvalues
automatically and categorically for any given structure
and phase velocity.

A brief outline of the work described in this paper has
been given in [18].

II. FORMULATION OF THE ELECTROMAGNETIC
F1ELD PROBLEM FOR MICROSTRIP

A microstrip line is considered to be symmetrically
enclosed by a rectangular conducting box (Fig. 1). Al-
though single microstrip lines are described, the pro-
cedure for coupled lines and other structures is very
similar. The strips may have finite thickness, however,
results are given only for strips of negligible thickness.
The dielectric substrate is assumed to be homogeneous
and isotropic. Propagation takes place in the g direction
with a 2z dependence of exp (—782). Since the four trans-
verse field components H,, H,, E., and E, may be
written in terms of E, and H,, then it is sufficient to solve
the Helmholtz equations:

VeH, + B2H, = 0 (1)
VEAE, + E2E, = 0 (2)
where
62 62
VtZ = — m——
9x?  9y?
and

k2 = w2ME — ﬁ?

subject to the boundary conditions:

o0H,
E.=0 =0 (at electric walls)
on
dE, .
P 0 H,=0 (at magnetic walls)
n

(# = unit vector normal to the walls) and the continuity
conditions (e.g., for an x-directed interface)
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where the subscripts 4 and D refer to the values in air
and dielectric, respectively, and

ka? = ko' = wluoeo — B°
and

Ep? = wlugex — B2

In the way described it is possible to formulate the
problem in terms of E, and H,. It is also possible that
other pairs of field components may be used to describe
the problem, such as the transverse electric or magnetic
field components, and such alternatives have been con-
sidered [26], [27]. However, for reasons given in [26],
the longitudinal field formulation is found most suitable.

The eigenvalues of the Helmholtz equations k*and
kp? are related according to the phase velocity v,c
(where v, is the relative phase velocity and ¢ the velocity
of light):

0 wipoeg — B 1 —1/v,2

= - C®

D wiuoegk — B2 ¢ — 1/0,2

The range of solutions of the wave equation as a func-
tion of 7 are shown in Fig. 2. There are two regions cor-
responding to propagating hybrid modes; these are
termed the slow and fast wave regions, corresponding to
propagation with 1/4/k<v,<1 and v,>1, respectively.
The fundamental mode is distinguished as that mode
whose phase velocity tends to the static value as the
frequency of operation tends to zero; consequently, the
slow wave region is of particular interest. Unlike other
sectors of the diagram, the slow-wave region is not
uniquely defined by 7. When 7 is negative, both slow-
wave and transient-wave solutions are possible, cor-
responding to negative and positive values of kg, re-
spectively. In Section IV this will be seen to cause the
matrix eigenvalue equation for the problem to be in-
definite.
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11I. DERIVATION OF THE FINITE
DIFFERENCE EQUATIONS

For the method of finite differences, the continuous
fields are replaced by discretized field values. Normally,
the partial differential equations governing the system
are approximated by the direct use of Taylor’s theorem
resulting in a matrix eigenvalue equation [19]-[21].
Two considerations make this approach undesirable.
First, the necessity for the use of efficient methods of
solving the matrix eigenvalue equation. Second, the
use of a graded finite difference mesh, which is required
for the investigation of structures with realistic dimen-
sions.

In general, the most efficient methods of solution are
available for symmetric matrix eigenvalue problems
[22]. When a graded mesh is used, the matrix of finite
difference coefficients will be unsymmetric if obtained
by the direct use of Taylor's theorem. A symmetric
matrix can be obtained by the use of the variational
method [20], [21], the method being applicable for self-
adjoint systems. As well as always producing a sym-
metric matrix, this method has the advantage that cer-
tain boundary and interface conditions appear as “na-
tural” boundary and interface conditions, and conse-
quently do not require any special treatment.

The requirement that the mesh must be graded is to
permit the investigation of structures with realistic
dimensions, where the enclosing box is large compared
to the strip width and substrate thickness. If a uniform
mesh were used, then in order that the mesh be sufh-
ciently fine for the strip to be adequately represented,
the total number of mesh points has to be extremely
large. The order of the finite difference matrix is directly
proportional to the number of mesh points used, and in
practice, storage requirements and speed of solution set
an upper limit on the number of mesh points that may
be used. However, the matrix order can be reduced and
good accuracy still obtained by the use of a graded mesh.
A fine mesh is then used only in regions where the fields
vary most rapidly (i.e.,in the vicinity of the strip,and the
air—dielectric interface). Computing times and storage
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Fig. 3. Typical region within finite difference mesh.

can be reduced by factors of at least 100 and 10, respec-
tively, by this graded mesh facility.

The derivation of the finite difference equations pro-
ceeds from the variational expression for an inhomo-
geneously filled structure. This is obtained directly from
Maxwell’s curl equations and has been given by Berk
[23]. In terms of the longitudinal field components, we
have

1
ff [k—2 (weE,V2E, + opH,V2H,) + weE.?
+ wquz] as = 0. (6)

By application of the divergence theorem, this may be
put in a form which does not involve derivatives higher
than the first order (which is required for the finite dif-
ference method to be used):

2
J=ff[<%>7f"flvt‘”2+“lV’¢]2
2
oY (2222 )
w dx dy 9x dy

Be\?
w

M

where

Ty = k02/(w2u050/<, - 132)
{

K’
J can be shown to be stationary in the normal way [23],
[24].

For simplicity, the finite difference mesh is taken to
have rectangular pitch, and is so arranged that mesh
points lie exactly on the boundaries, the strip edge, and
the interface. Each mesh point specifies a value for both
¢ and ¥, except at the boundaries where either ¢ and/or
Y may be zero.

Consider an elemental region in the difference mesh
such as that described by 3 points (Fig. 3, putting

h=hy=h). The surface integral of (7) over this region
may be approximated by using forward or backward

in air
Ky = . . .
in dielectric.
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difference formulas [20] to replace the first derivatives,
e.g.,

ffA | v 2dS
(5 T o

There is considerable freedom in the choice of approxi-

mations for terms in (7) such as [f ¢2dS. Two possibili-
ties are

1 h?
[[oas=@rtoeten™  ©
A 3 2
or
1
ff ¢ dS ’—\ig (@o? + d1? + $2? + dod1 + Pod2
A
h?
+ ¢192) 5 (10)

Equation (10) is consistent with linear in interpolation
of ¢ over the region, and is the basis of methods known
as finite elements [14]. Methods which use approxima-
tions of the type (9) are known as finite difference
methods. Thus by the use of approximations of the form
(8) and (9) or (8) and (10), it is possible to arrive at an
approximation for the contribution from the elementary
triangular region of Fig. 3 to the integral of (7). The
surface integral J of (7) is then computed as the sum of
approximations of each elemental region in the struc-
ture. The stationary property of J is utilized by differ-
entiating in turn with respect to each of the variables
b1, b2 v - o, Giy Y, Yo, - - -, Y. In this way N linear
equations are derived for the system where N is the
total number of variables ¢; and ¥,. Details on this are
given in Appendix I for the finite difference type of ap-
proximation. In matrix notation, the following eigen-
value equation results:

Adx = Ax
by using approximations of the type (9), and
Ax = ABy

by using approximations of the type (10). Matrices 4
and B are symmetric band-structured matrices. From
considerations of the solution of these equations (Sec-
tion IV), equations in standard form (11) have consider-
able advantages. It should be noted that (12) cannot
[25] be reduced to the standard form of (11) without
destroying the band structure and so increasing con-
siderably the computer storage requirements.

A numerical comparison was made [26] of the finite
difference and simple finite element methods as applied
to the empty rectangular waveguide, and it was found
that there are no advantages to be obtained by the use
of the finite element method.
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IV. SorLutioN OF THE MATRIX
EicenvaLUE EQuaTIONS

The solution is sought of the matrix eigenvalue equa-
tion in standard form Ax =\x, where 4 is a symmetric
band-structured matrix [19]-[21] of order #» and band-
width 2m-+1. Typically, for the specific application to
microstrip, # =360 and m =44. Since the eigenvalues A
may take on both positive and negative values in the
region of interest (r<0), then the matrix eigenvalue
equation is indefinite. The algorithms chosen were most
suitable for a symmetric band structured matrix; they
were as follows.

1) A is reduced to tridiagonal form [28].

2) The eigenvalues of a tridiagonal matrix are found
by the method of bisection [29].

3) The eigenvector associated with a specific eigen-
value was found by the method of inverse iteration
[22], [30].

By the use of methods 1) and 2), all the eigenvalues
of A may be found. In practice, only the negative eigen-
values closest to zero are required, and typically, the
lowest 3 were categorically determined. It is important
to realize that by these methods, it is impossible to omit
any solutions, and this is a very desirable feature of the
method used in comparison with iterative methods. In
general, iterative methods converge to the eigenvalue
closest to a given estimate; in Appendix II it is shown
that the eigenvalue spectrum is much more complicated
than might first be thought, and especially for this rea-
son the use of iterative methods can give very mislead-
ing results.

If the finite element formulation of the problem had
been used, not only is the minimum storage requirement
approximately doubled by the need to store two band
matrices, but the only appropriate algorithm available
[31] which preserves the band structure is an iterative
method. This particular method could be used to deter-
mine all the eigenvalues required, but it would be pro-
hibitively inefficient to do so. There is certainly no
numerical advantage to be obtained by the use of the
simple finite element method.

V. RESULTS

Using the methods described, dispersion curves are
obtained in the form of graphs of k. against frequency,
where kst =1/v,2. Although the Brillouin diagram is a
more usual display of this information, ke is a more
sensitive parameter, and its use is widespread in micro-
strip literature. In addition to dispersion curves, power
density diagrams are given at a particular frequency for
certain modes. These are determined by evaluating the
field components for a particular eigenvalue, and com-
puting the power flow [32] from

P«ff Re (E X H*)-dS. (11)
The diagrams show contours of equal power levels given
in decibels relative to the highest power level.
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Fig. 4. Graded mesh used for single microstrip in a large box (half

section shown). Note that the strip width equals the substrate
thickness. Relative permittivity of substrate=9.7. Scale: 1 unit
=0.002 in.
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Fig. 5. Dispersion characteristics for the structure of Fig. 4. —,
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The results for two microstrip structures are pre-
sented: enclosed single microstrip and enclosed coupled
microstrip lines,

Single microstrip

The configuration considered is shown in half section
in Fig. 4. The crosses designate mesh point values; it
should be noted that the vertical scale is discontinuous.
The dispersion curve obtained for many of the propagat-
ing modes is shown in Fig. 5; this shows results for both
electric and magnetic wall symmetry planes. The value
of ket for the structure is given for static (TEM) opera-
tion, derived by accurate finite difference solution of the
two associated static problems [26]. It is seen that there
is indeed one mode without a frequency cutoff, and this
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Fig. 6. Power flow diagrams for structure in Fig. 4 giving contours
of equal power density in decibels relative to the highest contour.
(a) Fundamental mode at frequency 1.9 GHz (kest=6.64). (b)
Static solution (ks =6.41).

is seen to become highly dispersive above 2 GHz. The
difference between the static limiting value of . for
this mode and the TEM value shown is due entirely to
discretization errors [20] in the hybrid mode analysis.
There are also seen to be a number of higher order modes
which have a low-frequency cutoff; for reference these
are designated according to their plane of symmetry E
or M for electric and magnetic walls, respectively, and
numbered in order of ascending cutoff frequency. Thus
in this way, the higher order modes are specified by the
letters Ey, My, Ey, M, Es, Ms, etc., left to right on the
dispersion curve. It is seen that the dispersion curves
tend to group in pairs of modes with the same subscript,
i.e., Ey and M; mode dispersion curves are very close
togzather.

Further information of the modes was found by ex-
amination of power density diagrams. Fig. 6 shows dia-
grams for both the fundamental mode and for the static
case. It is seen that there is considerable similarity be-
tween the two diagrams, and at the frequency given, the
power flow is mainly below the strip in the dielectric
substrate region.

Because the microstrip occupies only a small fraction
of the tctal dielectric surface in the structure considered,
then slow wave propagation by the associated slab line
structure is of considerable interest. Specifically, we can
consider the structure formcd by the removal of the
microstrip. Propagation of LSM and LSE modes by
slab line structurcs is, of course, well known [32]. The
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Fig. 7. (a) Power flow diagram for structure of Fig. 4 giving con-
tours of equal power density in decibels relative to the highest
contour. Higher order mode M, (see text) at frequency 22.9
GHz (kstt=4.0). (b) Power flow diagram for the LSM;: mode on
the associated slab line for the structure of Fig. 4 at frequency
22.7 GHz (xegs=4.0).

dispersion curves for these modes were compared with
the higher order microstrip modes, and it was found that
there was a very close correspondence in the curves for
the LSM modes and the high-order microstrip modes. It
was further found by the examination of the power den-
sity diagrams that there was a very close similarity be-
tween the diagrams for the modes M; and LSMjy,, and
between M, and LSMy; the diagrams for the former
case are given in Fig. 7. The conclusions drawn about
the higher order modes are given in the discussion for
coupled strip below; however, it should be noted that
apart from these modes, the device supports only one
other type of mode, the fundamental mode for which
ket tends to the static value as f—0. The “surface-wave”
modes reported by Daly [14] are considered in Appen-
dix II and are shown to be a misinterpretation of re-
sults.

Coupled Strips

The coupled strip device is shown in half section in
Fig. 8; it should be noticed that again the vertical scale
is broken. The dispersion curves for the structure are
shown in Fig. 9 together with the static case param-
eters. The two modes without a low-frequency cutoff
value correspond to the “even” and “odd” modes; these
have magnetic wall and electric wall symmetry, re-
spectively. It is seen that the limiting values of .+ for
these modes are in good agreement with the respective
static values. A number of higher order modes exist, and
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Fig. 8. Graded mesh used for coupled strips in large box (half sec-
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ness. Relative permittivity =9.7. Scale: 1 unit=0,001 in.
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Fig. 9. Dispersion characteristics for the structure of Fig., 8.
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modes with an electric wall symmetry plane. Note that modes
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these are seen to be grouped in pairs in a manner similar
to that noted above for single microstrip. Again, it was
found that the dispersion curves for the LSM modes
which propagate in the associated slab line structure
were almost identical to those obtained for the high-
order coupled strip modes. Examination of power den-
sity diagrams showed that the modes M, and E; are
very similar to each other and to the LSMy, mode. It is
concluded that because the plane of symmetry makes so
little difference to the higher order modes with the same
subscript, then these modes are strongly associated not
with the strip, but with the dielectric—air interface be-
tween the strip edge and the outer side wall of the en-
closure. In view of their close similarity to the LSM
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modes, they are best considered as distorted LSM
modes. The specific type of mode correspondences are
grouped below:

E, M; LSMjy,

E, M, LSMi.

Thus for enclosed microstrip devices, an approximate
indication of the frequency when high-order modes will
propagate is given by a simple calculation of the cutoff
frequency of the LSMy; mode.

It should be noted that when the dimensions of the
enclosing conducting box are just a few times the strip
width (e.g., the case given in Appendix II), then the
effect of the strip is to greatly perturb the slab line type
modes, and the design indication given above ceases to
be accurate.

VI. CoNcLusION

The specific conclusions of this work are as follows.

1) Theory and typical results are given for the nu-
merical solution of a class of inhomogeneously filled
waveguide problems with or without inner conductors.

2) Notable features of the approach are as follows.

a) A nonuniform mesh can be used to allow the in-
vestigation of realistic structures, and to make optimum
use of the available computer capability.

b) Special attention has been given in the formula-
tion in order to use matrix methods which allow cate-
gorical determination of the eigenvalues.

3) Results for the main objective of this work have
been obtained for two realistic microstrip devices. Com-
plete dispersion curves for these devices were obtained,
and the following are shown.

a) The dominant mode in microstrip is dispersive,
but in the zero frequency limit it can be identified with
the static case. Similar results for the two dominant
modes in coupled strip were also obtained.

b) There is a close relation between the higher
order modes, and the LSM modes for the associated slab
loaded waveguide. This suggests that a simple estimate
of the frequency at which higher order modes will
propagate may be obtained through consideration of the
well-known (and easily calculated) LSM modes.

4) Attention is drawn to the physically spurious
modes described in Appendix II. These modes are
thought to be present in any finite difference or finite
element formulation for inhomogeneous problems when
slow wave solutions are sought.

5) The “surface wave” mode reported by Daly [14]
is believed to be just one of the spurious modes men-
tioned in 4) above. All the features of the mode which
he describes have characteristics of the spurious modes
discussed in this work.
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AprPENDIX |

By dividing the structure into a number of elemental
regions, then (7) may be approximated by J= ;S;
Considering a particular triangular region as given in
Fig. 3(a), by the use of finite difference approximations
S; may be obtained. By differentiation with respect to
each of the mesh point variables, the following matrix
equation results:

) [ (b s _,,
9o hy by h
5, o p(Eik) W
o hi ke I
Bi" —rh % fﬁ 0
O¢1| 71 h
as, — Phy Phs
it} —W 0 -2
2 hy hy
aS; —7h
95 ki — 0 W
dp2 hy
95 W — P —W* 0
2 ha
where

Be\*

Pr={Z)e p=rp

w

and

WH = W = (ff)}
w

(but see text following).

It can be shown that for a graded mesh system, it is
preferable to set W =0 except when an air—dielectric in-
terface bounds one side of the triangle; in this case the
terms W indicated by an asterisk should be included.
These terms are specified here for the case of an x-di-
rected interface.

By repeated application of matrices of the form given
above, and by utilizing the stationary property of (7),
then N linear equations may be obtained for the system.

ArprENDIX 11

The mathematical formulation of the problem is such
that for a particular structure, v, (=1/4/ket), is the only
independent variable. By the use of the algorithms men-
tioned in Section IV, a number of solutions are found
for the eigenvalue equation, each eigenvalue correspond-
ing to a different frequency value for the same value of
¥p. Such values are designated by “X” on Fig. 10. By
taking a sufficient number of values of v, after careful
consideration it is possible to connect the results unique-
ly by smooth curves. This can be done with con-
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fidence knowing that for a particular value of v, all the
solutions (for frequency) are obtained within the range
plotted. This categorical evaluation of all eigenvalues
within a given interval is a feature of the Sturm sequence
properties [22], [29]. The resulting dispersion curves
are seen to be unexpectedly complicated. However, the
dispersion curves can be interpreted as a superimposi-
tion of two classes of results (Fig. 11). One class consists

—7rh
w* oo 1 o
ks
—Phy ,
—W* Yo P Yo
ha
0 —W* 1
1 Tdioh? o1
3
w 0 21 P’ 12
'rhl 0 ¢ 1
" 9 o]
Phy
0 — ¥ Py
h2 \ \

of the fundamental microstrip mode, which is noted to
tend to the static value of ks as f—0, and a number of
higher order modes which have frequency cutoff. The
other class consists of a large number of modes without
a low-frequency cutoff; these are nonphysical modes
which nevertheless satisfy the approximate mathemati-
cal formulation of the problem. The tessellated pattern
of Fig. 10, with individual curves smoothly alternating
between two intersecting classes of modes, is typical of a
coupled mode system [33].

The cause of these spurious solutions is believed to be
in the indefinite nature of the variational expression,
(7). Similar extraneous solutions are reported by Har-
rington [34] that occur for an indefinite system but not
for a definite system. The identification of the spurious
mode class was made by investigation of slab-loaded
waveguide structures. The modes which propagate on
this type of structure are well known [32]; however
using the formulation described, it was found that as
well as these physical modes, spurious modes were also
present of identical appearance to those in Fig. 11. It
was found that the number of these modes was equal to
the number of mesh points on the air—dielectric inter-
face, and that each mode could be characterized by the
number of changes of sign of the values of ¢ across the
interface. Again, this number of spurious solutions
agrees with Harrington’s findings [34], where one free
boundary point gave rise to one spurious solution, and
two points to two spurious solutions. These modes were
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Fig. 10. Dispersion results computed for enclosed single microstrip.
Strip width =1.0 mm; substrate thickness=0.5 mm; height of
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Dispersion curve interpolated from results of Fig. 10.
, spurious modes; , physical modes.

found to exist only in the range

«+ 1

K < Kett <

Apart from the considerations given, it would be very
difficult to account for these modes physically; their
number, absence of low-frequency cutoff, and their
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rapid spatial dependence of field components along the
dielectric—air interface all point to their being nonphysi-
cal.

The dispersion curves given in this paper (except
Fig. 10) represent the interpolated curves derived from
more complex curves, like Fig. 10, which contain the
spurious mode solutions.
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Frequency-Dependent Characteristics of Microstrip

Transmission Lines

MARK K. KRAGE AND GEORGE I. HADDAD

Abstract—A method for determining the frequency-dependent
characteristics of both single and coupled lines in shielded microstrip
is presented. Numerical results are given for a variety of dielectric
configurations and the effects of geometry on the dispersion charac-
teristics are examined in detail. Of particular interest are the charac-
teristics of coupled lines on compensated dielectric structures, i.e.,
structures that are capable of achieving equal even- and odd-mode
phase velocities, and the effects of dispersion on the directivity char-
acteristics of such lines are discussed. In addition, the variation of
impedance as a function of frequency, where the impedance is defined
as the ratio of the power to the square of the longitudinal current, is
presented for representative cases of single and coupled lines.

I. INTRODUCTION

OR sufficiently low frequencies the quasi-TEM
]Ftheory can be employed to obtain the characteris-

tics of microstrip lines and, using this approxima-
tion, extensive design data have been calculated for both
single and coupled lines [1]-[3]. When the wavelength
in a microstrip line becomes comparable to the trans-
verse dimensions of the line the deviation from quasi-
TEM behavior becomes significant and higher order
modes of propagation become possible. Recently, several
authors [4]-[10] have advanced methods for calculating
the frequency-dependent characteristics of microstrip
lines, but only limited numerical results have been pre-
sented for both open and shielded microstrip configura-
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Fig. 1. Shielded microstrip geometry.

tions. Most authors have confined their attention to the
dominant mode characteristics of single lines, but Den-
linger [9] and Gelder [10] have considered the charac-
teristics of a pair of coupled lines and Mittra and Itoh
[7] and Pregla and Schlosser [11] have considered
higher order modes in a shielded structure.

In this paper a method is presented for calculating the
frequency-dependent characteristics of shielded micro-
strip lines, and the effects of geometry on the dispersion
characteristics of single and coupled lines are considered
in detail. Although the analysis will be carried out only
for the configuration of Fig. 1, results will be presented
for the modified configurations of Figs. 2 and 3, as well as
for the geometry of Fig. 1. It was demonstrated in a pre-
vious paper [3] that coupled lines on the modified
geometries can achieve equal even- and odd-mode phase
velocities and are therefore capable of achieving high



